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Relativistic Simultaneity and Causality
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We analyzed two types of relativistic simultaneity associated to an observer: the space-
like simultaneity, given by Landau submanifolds, and the lightlike simultaneity given by
past-pointing horismos submanifolds. We study some geometrical conditions to ensure
that Landau submanifolds are spacelike and we prove that horismos submanifolds are
always lightlike. Finally, we establish some conditions to guarantee the existence of foli-
ations in the space-time whose leaves are these submanifolds of simultaneity generated
by an observer. These foliation structure allows us to incorporate the simultaneity sub-
manifolds for studying some dynamical systems, for instance free elementary massless
particles.
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1. INTRODUCTION

It is well known that some problems related with simultaneity have not been
solved yet. A number of works treat the local character of relativistic simultaneity
accepting that Landau submanifolds (Olivert, 1980) generated by an observer are
leaves of a spacelike foliation. However, the fulfillment of this property cannot
be ensured on any neighborhood without assuming some additional geometrical
conditions. Therefore, when working on a neighborhood where this property does
not hold, some difficulties in setting a successful dynamical study arise because
each Landau submanifold depends on positicend 4-velocity inp. The study
of some of these conditions was the main objective of this study.

In this work, we consider two types of simultaneitispacelike simultaneity
which describes those events that are simultaneous in the local inertial proper
system of the observer, attightlike simultaneity which describes those events
which the observer perceives as simultaneous although they are not simultaneous
in the their local inertial proper system. The sets of spacelike simultaneous points
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and lightlike simultaneous points determine the Landau submanifold and the past-
pointing horismos (Beem and Ehrlich, 1981) submanifolds respectively.

Our next concern is the causality related to these types of simultameity, be-
cause we should be able to guarantee, for instance, that Landau submanifolds are
spacelike in a given neighborhood. For this, we introduce a new concepathe
gential causality more general than causality and we prove that every Landau
submanifold is tangentially spacelike, but it is not necessarily spacelike. On the
other hand, we prove that every horismos submanifold is tangentially lightlike and
as well as lightlike.

In physics, it is usual to work with synchronizable timelike vector fields. In
most cases, the leaves of the orthogonal foliation are considered “simultaneity
submanifolds.” In this work it is proved that givenGt® future-pointing causal
curve,observer and a timelike vector tangent to the observer, there exists, on a
certain tubular neighborhood of this observer, a synchronizable timelike vector
field containing this vector. Moreover, this vector field is orthogonal to a Landau
submanifolds foliation. On the other hand, it is also proved that given an observer
there exists, a foliation whose leaves are past-pointing horismos submanifolds of
points of the observer (in a tubular neighborhood). The foliations structure allows
us to extend simultaneity to neighborhoods of the space-time.

2. PRELIMINARY CONCEPTS

In what follows M, g) will be a four-dimensional lorentzian space-time
manifold.

Definition 1. An open neighborhoad; of the origin inT, M is said to benormal
if the following conditions hold:

(i) the mapping exp: No — N, is a diffeomorphism, wherd/, is an open
neighborhood op,
(i) given X € Ay andt € [0, 1] we have thatX € N.

For a given poinp € M, an open neighborhooll, of p is anormal neigh-
borhoodof p if NV, = exp, No whereAj is a normal neighborhood of the origin
in TpM. Finally, an open séf # ¢ in M, which is a normal neighborhood of each
one of its points, is @onvex normal neighborhood

These neighborhoods are useful to obtain a dynamical study of simultaneity.
Moreover, théNhitehead Lemmasserts that givep € M and a neighborhoad
of p there exists a simple convex neighborhdédf p such thaty c U (Sachs
and Wu, 1977). Therefore, we can consider these kind of neighborhoods without
any loss of generality.

We are going to introduce two static ways to analyze simultaneity: Landau
and horismos submanifolds. Givene T,M and the metric tensor field, we
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consider the submersich : N, — R given by®(q) = g(expglq, u). The fiber
Lpu = ®7H0) )

is a regular three-dimensional submanifold, calladdau submanifoldThe next
result (Olivert, 1980) guarantees its uniqueness:

Theorem 1. Givenue Ty M afuture-pointing timelike vector and, 8s orthog-
onal 3-space, there exists a unique regular three-dimensional submanifqld L
such that §is tangent to L, , at p and whose points are simultaneous with p in
the local inertial proper system of p.

On the other hand, defining the submersipn\, — {p} — R given by
¢(q) = g(exp,* a, exp,* g), the fiber

Ep:=¢ %0) (2)

is a regular three-dimensional submanifold, calfedtismos submanifoldf p,
which has two connected components (Sachs and Wu, 1977). We wiflastH
pointing (espectivelyfuture-pointing) horismos submanifadd p, E; (resp.Eg),
to the connected component of (2) in which, for each pqirt N, — {p}, the
preimage ex‘pl g is a past-pointing (respectively future-pointing) lightlike vector.
The points in a Landau submanifdlg, , are simultaneous with in the local
proper system op (i.e. they are synchronous wif}). The points in a past-pointing
horismos submanifolé& ; are observed simultaneously pyi.e., they belong to
light signals which arrive ap simultaneously. On the other hand, the points in
a future-pointing horismos submanifolfggr belong to light signals sent from
simultaneously. In general, we will call both, Landau and horismos submanifolds,
simultaneity submanifolds

3. TANGENTIAL CAUSALITY AND CAUSALITY

Let pbe a pointin the space-tini, we introduce the concept pftangential
causality that it consistgyrosso modgin a first-order approximation of the causal-
ity on a given neighborhood gd, for two reasons:

(i) Although this conceptis more general than causality, itis more operative.
(i) An observer detects the events of the space-time in its tangent space. So,
the p-tangential causality is a kind of “observed causality.”

3.1. Tangential Causality

Let V be a four-dimensional vector space regarded@®ananifold. It can
be canonically identified with any of its tangent spaces. ForeacN there exists
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a unique isomorphism, : T,V — V such that

o(pyW) = wW(w) ®3)

forallw € T,V and for allw € V*.
If (V, g) is a lorentzian vector space, we define a (0, 2)-tensor e
TV by

9w, 2) = g(pvW, $v2) 4)

wherev € V andw, z € T, V. Then, [V, g |1,v) is a lorentzian vector space for
all veV and therefore \{,g) is a lorentzian manifold (Sachs and Wu,
1977).

Applying this result toT,M, for eachv € T,M we can define a canonical
isomorphismg, of T,(T,M) onto T;M. Then (T,M, g,) is a lorentzian vector
space, whergp = ¢ |1,m. If we definegp, on T (T, M) from g, (according to (4)),
then (T, M, gp) is a lorentzian manifold.

Definition 2. Let N be a regular submanifold &fl, p € N, \/, a normal neigh-
borhood ofp, and\p = exp,* Ny, C T,M. We can consider

exp,' N (5)

as a regular submanifold iN; that we call thep-tangential submanifold dfl.
Givenv € exp;1 N N M, we define thep-tangential causality dfl atv as the

causality of exg* atv. If this causality is the same at every point of gk N Ao
then we define th@-tangential causality ol in Aj as the causality of (5) at an
arbitrary point of exg' N N Ab.

It is easy to prove the next relation
ToN = exp,,, (Tv (exp,*N)),  g=exp,veN, (6)

and takingv = 0, as exp, = ¢o (Beem and Ehrlich, 1981), we have

ToN = ¢o (To (exp,* N)). (7)

Then, the causality o\ at p coincides with thep-tangential causality oN

at the origin. However, givemp, g be in N NN, v € expgl N NNy andw €
exp(;1 N N MNy. The causality ofN at p is not necessarily the same as the
tangential causality o atv # O or theqg-tangential causality o atw. Never-
theless, if the causality dfl at p is nonlightlike then these causalities are locally
coincident.
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Applying the tangential causality concept to simultaneity submanifolds we
obtain the next result:

Proposition 1. Let N be a normal neighborhood of the origin i, /. Then

(a) The p-tangential causality of J,, is spacelike in\j, for all future-
pointing timelike vector & T, M.
(b) The p-tangential causality of Hs lightlike in AV — {0}.

Proof:

(a) Suppose € expgl L p,u N Np such thav # 0, theng(u, v) = 0. We de-
finegy : Mo — Rbygu(u) = g(u, u") forallu’ € M. Letv’' € N, then
V'isin expgl Lpu if and only if gu(v') = 0. Letw € T, No, thenw is in
Ty (exp,* Lp.u) ifand onlyifw(gy) = 0, i.e.,ifand onlyiig(¢, 'u, w) = 0
(Sachs and Wu, 1977). Then,

Tu(exp,* Lpu) = (qbv‘lu)l. (8)

But ¢, tu e TN is timelike becausey(¢,u, ¢, 1u) = g(u, u) < 0.
Thus (8) is a spacelike subspace and henc¢=,;;jel>q;u is a spacelike
submanifold in any normal neighborhodg of the origin inT,M.

(b) An equivalent fact can be found in pages 127 and 128 of Sachs and Wu
(1977). O

3.2. Causality of Simultaneity Submanifolds

Inanormal neighborhoatf, of p, thep-tangential causality of a submanifold
is not necessarily the same as the causality of this submanifold.
Givenv € TpM we denote

Vii=TpqV, geEN, 9)

wheret,q is the parallel translation along the unique geodesic segmeif;in
which joinsp andq. The vector field* on}, is said to beadaptedo the tangent
vectorv. Itis clear that (9) depends differentiably grand thus it is well defined.
Note that the vector fielg* has the same causal character d®cause parallel
translation keeps causality.

Proposition 2. Let U be atimelike vector field on an open neighborhtiot) is
synchronizable oty if and only if its orthogonal 3-distributioflJ )+ is a foliation
onl. Then,(U)" is calledphysical spaces 3-distributiasf U and it is denoted
by §.

In general, if a submanifold is spacelike or timelike at a p@inthere exists
a small enough neighborhood pfsuch that the submanifold is still spacelike or
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timelike, respectively. Then, a Landau submanilolg, is locally spacelike around
p, but given any normal neighborhodd, of p, the Landau submanifold, , is
not necessarily spacelike at every point\d§ N L, ,. Now we study geometric
properties to determine the causality of simultaneity submanifolds:

Proposition 3. Let\V, be a normal neighborhood of p.
(a) Given future-pointing timelike vectora T,M, if u* (se€(9)) is synchro-
nizable in\y, then {Lpu = (u)* forallg e Ny N Lpu.
(b) TqEp = (vy)* forallg € NV N Ep, where v=exp,*q.

Proof:

(a) LetNy = exp;lj\/’p be a normal neighborhood of the originTgM and
v = exp,’ g, thenT,(exp," Lp.u) = (¢, 'u)* and hence

TaL pu = exp,,, (Tv(exp* Lpu))
= {€XPpy W 1 W € Ty(TpM), x ¢pyw Lu}.

Let w € (¢, tu)*. Theng(u*, (¢yw)*) = 0 andg(u*, v*) = O because
parallel translation keeps orthogonality. Henggw)* and v* are in
(u*)*. Sinceu* is synchronizable iV, (U*)* is a foliation in AV
and hence\*, (pywW)*]q € (u’g])L. Let us denot®(X)(Y) the Lie bracket
[X, Y] where X, Y are vector fields. Therd(v*)((¢yW)*))q € (u;)i for
all w € (¢, 'u)*, i.e., for allw € T,(T,M) such that ,w); € (uz)*.
Hence, using induction over

OO ((ByW)))q € (ug)* (10)
for allw € (¢, tu)*. Since (Helgason, 1962)

— (_l)n * *

X W = 3 1oy OO (W) (1)
and (10) we obtain exp, w € (u;)L, and since the dimension ®§L
is the same as the dimension UEI{ we have

TaLpu = (Uy)*.

(b) Let Mo = exp,* \V;, be a normal neighborhood of the origin Ty M.
ThenT,(exp,* Ep) = (¢, 'v)*" and hence

TqEp = expy,, (Tv(exp, Ep)) = {€XPy, W i W € T (TpM), gyw_Lv}.
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Let w € (¢, 'v)t. Then g(v*, (pyw)*) = 0 and g(v*, v*) = 0. Hence
(pyW)* andv* are in {/*)*. We have that (Helgason, 19623029(V(,w)-
v*, v*), and since the torsion vanishes and becaugé¢,w)*)q = 0, we
can write

(Vo V")g = (Vo V') — (Vo- (uw)"), = (O (@W)")a.

Therefore §(v*)((¢yw)*))q € (v§)*, forallw e (¢, 'v)*,i.e., forallw e
Tv(TpM) suchthat$,w); € (vj;)L. Itis easy to show using induction over
n that

BO) (eW)))q € (v5) (12)

for all w € (¢, *v)*. Using (11) and (12) we obtain expw € (vg)*.
Since the dimension dfy E, is the same as the dimension gf*, we
haveTqEp = (vi)". O

An immediate consequence is the next result:

Corollary 1.

(a) Given a future-pointing timelike vectora T, M, if u* is synchronizable
in NVp, then L, , is spacelike inV,,.
(b) Ep is lightlike in AV, — {p}.

It is important to remark that given a poipte M andu € T,M a future-
pointing timelike vector, if the adapted vector fielti(given by expression (9)) is
not synchronizable in a normal neighborhotfg of p, then the spacelike causal
character ofL, is not ensured inVy, but we can always ensure that tpe
tangential causality of , , is spacelike inVo = exp,* V.

There exists a necessary and sufficient condition for Landau submanifolds to
be spacelike, but it is less operative than the sufficient condition. Anyway, we are
going to enunciate this result without a proof:

Proposition 4. Let, be a normal neighborhood of p. GivenauT,M future-
pointing timelike, the following conditions are equivalents:

(i) Forallqg e NpNLpy, wehave JLyy = (Uj)*.
(i) There exists a normal neighborhodd, of p such thatVy N Ly =
Np N Lpuand u is synchronizable it

Given a simultaneity submanifold, we can construct its tangent spaces in

any point. Sincelj; = tpqu and parallel translation keeps orthogonality, we have
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(ug)* = Tpqut. So, ifu* is synchronizable in a normal neighborhobd of p and
sinceut = TpL p, We can write (Proposition 3)

Tl pu = tpqTplpu- (13)

Analogously, sinceg = tpqv we have ((;;)l = 1pqv* and hence (Proposition 3)

4. SIMULTANEITY FOLIATIONS

On a convex normal neighborhoddwve can define the Landau and horismos
submanifolds foreach € V. Inparticular, giverg : | — M aC®* future-pointing
causal curvedbserve), in V we can define the sets of Landau and horismos
submanifolds

{Lﬂ(t)}tel ! {E;(t)}tel ! {Elg(t)}tel !

whereL gy denoted. g) sy given by (1). Our aim was to study this Landau and
horismos submanifolds as leaves of a spacelike and lightlike foliation, respectively.

4.1. Landau Foliations
Theorem 2. LetB : | — M be an observer and g B(to) forany § € |. Then,

(i) there exists a convex normal neighborhoddf p such thatvq € V,
there exists a unique & | such thatg(ty) € V, q € Lgg,).
(i) there exists a foliatiors in V given by

L5(@) = TqL s (15)
where ge L g,), and the leaves afg are the Landau submanifoldsfs,).

The foliationL is calledLandau foliationgenerated bys.

Proof: There exists an open neighborhadadf p, that we can consider a convex
normal neighborhood, on which the normal exponential mapl aé a diffeomor-
phism (Sakai, 1996). Therefore, each poinvirs contained precisely in a unique
Landau submanifold. 4,), whereg(t;) € g1 N V. ObviouslyL g,y are leaves of
afoliationony. O

The points of a leaf are simultaneous in the local inertial proper system of
the observer. However, given a convex normal neighborhood we can not assure
that the Landau submanifolds generated by an observer are leaves of a folia-
tion, because these Landau submanifolds can intersect themselves. In fact, given
B : 1 — M an observer in Minkowski space-time, as the Landau submanifolds
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L s¢) are hyperplanes orthogonals to the timelike veplo), if B is nota geodesic,
the Landau submanifolds generateddowill intersect themselves. Theorem 2 as-
sures us that there exists a small enough neighborhood for Landau submanifolds
to be nonintersected between them.
~ Given the foliationC in V, if the adapted vector field (according to (9)) to
B(t) is synchronizable irV for eacht € | then, Corollary 1 assures thdj is
spacelike inV. Thus, we can build foliations i’ from the orthogonal 3-spaces of
the vector fields adapted g{t) for eacht I, (8(t)*)*. Then, the leaf containing
B(t) is the Landau submanifoldg ).

Moreover, ifLg is spacelike iV, thenitis orthogonal to atimelike 1-foliation.
So, we have defined a timelike vector field frgim

Theorem 3. Let the foliationLs be in). If the adapted vector field t6(t) is
synchronizable irV for each te I, thenﬁg is a synchronizable future-pointing
timelike vector field.

Given the foliationLs in V, if the vector field adapted tB(t) is synchro-
nizable inV for eacht € I, by (13) we have thalyL ,, = tpqTpL p,u, Where
p = B(to), u = B(to), to € |, andq € Lp,u NV. Therefore, because parallel trans-
lation keeps orthogonality anls(p)* = u, we obtain thatls(q)* = tpqu.
Moreover, as8 is an integral curve of+, we can build a different Landau
foliation from each integral curve aﬁg. These foliations will be the same only in
some cases (next result is easy to prove):

Proposition 5. Let the foliationLg be inV and letg’ : I’ — M be an integral
curve of the vector fieldlg. If Lp (the Landau foliation generated tg) is well
defined and the leaves 6§ (or L) are totally geodesics, thefly = Lp.

4.2. Horismos Foliations

Lety : | — M be a geodesig; Be a positive affine reparametrizationjof
(then y is a geodesic). Letyf] denote the corresponding equivalence
class of geodesics. Let: | — M be a future-pointing lightlike geodesic. Th&n
will be calledphotonand the equivalence clasg jwill be calledlight signal

We will study from which points can an obserygreceive light signals and
to which ones can he send them. The next Proposition can be found in Sachs and
Wu (1977):

Proposition 6. Letg : 1 — M be a C* future-pointing causal curve and sup-
pose § € | is given. There exists an open intervalcll containing t and a
convex normal neighborhood of B(tp) such that, for all xe V — 8J there exist
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tg,t; € J (where £ < tg < ty), a light signal[A] from x to B(t;) and a light
signal[A’] from B(t_1) to x. Moreover 14, t1, [A], [A'] are unique.

Applying Proposition 6 we can construct horismos foliations:
Theorem 4. LetB: 1 — M be a C* future-pointing causal curve ang € I.
Then,

(i) there exists an open interval @ | containing t and a convex normal
neighborhood’~ (respectively’™) of B(tp) suchthavq € V-~ — 8J (re-
spectivelyvq € V* — BJ) there exists a unique &€ J such thap(t;) €
V™, q € Eg, (respectivel(ty) € V', q € E;(tl)).

(i) the mappings

Eg 1V —BI—> PV —BJ) dgivenby e5(q) = TqEg,),
&Vt —BI - P(V" —BJ) givenby &;(q) = TqEjy,,

are foliations. The leaves & andé‘; are the past-pointing and future-
pointing horismos submanifolds, respectively

The foliations&; and 5; are called respectivelpast-pointingand future-
pointing horismos foliatiomenerated bys.

L Bty

Fig. 1. Scheme of simultaneities on a normal neighborhood.
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GivenV a convex normal neighborhood aid I — V an observer, we can
ensure that the future-pointing (past-pointing) horismos submanifolds generated
by 8 do not intersect themselves.

We can build the neighborhoodé™ and V* of the last Theorem in the
following way: We define the open sets

V ={peV:ipeE;tel], V'={peV:ipeEjtell

they are convex normal neighborhoods becavse a convex normal neighbor-
hood.

Hence, there exists a future-pointing horismos foliation generategl dy
V*. Analogously, there exists a past-pointing horismos foliation generated by
onV~. Moreover, by Corollary 1, this foliations are lightlike foliations. Then, we
can define horismos foliations and Landau’s foliations on the same convex normal
neighborhood (see Fig. 1).

5. CONCLUSION

In this paper we have proved that the Landau submanifolds generated by
an observer are not always spacelike leaves of a foliation in a convex normal
neighborhood. On the other hand, the horismos submanifolds generated by an
observer are always lightlike leaves of a foliation in any convex normal neighbor-
hood. It can be applied to the study of wave fronts of a free massless particle in
the following way:

In Symplectic Mechanics, the evolution of a free massless elementary particle
can be described by a three-dimensional lightlike foliatidim the Minkowski
space-time (Souriau, 1970, 1997). This result is generalized (keieah, 2000;

Liern and Olivert, 1999) to a general space-tiMemaking use of fiber bundles
structures that locally preserve the properties of special relativity.

For a spacelike Landau submanifdlg , and the natural injection: L, —

M, the mappingj : Ly — P(T(Lp,u)) given by

Gm) = QM) Ni(Tmlpu), VYmMe Ly, (16)

is a two-dimensional foliation (Liern and Olivert, 1995, 1999) whose integral
submanifolds can be interpretedwaave fronts. Taking into account that we can
define a bundle-like (Naveira, 1970) metric bg, (Liern and Olivert, 1995), we

can prove that the separation between the wave fronts is locally constant (Liern
and Olivert, 1995). This result is quite interesting but it is not complete for two
reasons:

(i) Inthese works, authors worked on a unique Landau submanifold,
(i) and they worked in a neighborhood where the metric was bundle-like.
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In this paper we have solved both disadvantages. Firstly, we can interchange
Landau submanifolds in a differential way because they form a spacelike foliation
when they verify some conditions, as we show in Section 4. Moreover, the second
disadvantage is solved by using convex normal neighborhoods in general.

Therefore, given an observgr we obtain the wave fronts of a free massless
elementary particl&2 from the intersection of2 with the Landau foliationCy
generated by the observer. But, in general, the observed wave fronts are obtained
from the intersection a2 with the past-pointing horismos foliatiefy . This double
interpretation of simultaneities makes evident the differences between them.
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