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We analyzed two types of relativistic simultaneity associated to an observer: the space-
like simultaneity, given by Landau submanifolds, and the lightlike simultaneity given by
past-pointing horismos submanifolds. We study some geometrical conditions to ensure
that Landau submanifolds are spacelike and we prove that horismos submanifolds are
always lightlike. Finally, we establish some conditions to guarantee the existence of foli-
ations in the space-time whose leaves are these submanifolds of simultaneity generated
by an observer. These foliation structure allows us to incorporate the simultaneity sub-
manifolds for studying some dynamical systems, for instance free elementary massless
particles.
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1. INTRODUCTION

It is well known that some problems related with simultaneity have not been
solved yet. A number of works treat the local character of relativistic simultaneity
accepting that Landau submanifolds (Olivert, 1980) generated by an observer are
leaves of a spacelike foliation. However, the fulfillment of this property cannot
be ensured on any neighborhood without assuming some additional geometrical
conditions. Therefore, when working on a neighborhood where this property does
not hold, some difficulties in setting a successful dynamical study arise because
each Landau submanifold depends on positionp and 4-velocity inp. The study
of some of these conditions was the main objective of this study.

In this work, we consider two types of simultaneities:spacelike simultaneity,
which describes those events that are simultaneous in the local inertial proper
system of the observer, andlightlike simultaneity, which describes those events
which the observer perceives as simultaneous although they are not simultaneous
in the their local inertial proper system. The sets of spacelike simultaneous points
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and lightlike simultaneous points determine the Landau submanifold and the past-
pointing horismos (Beem and Ehrlich, 1981) submanifolds respectively.

Our next concern is the causality related to these types of simultameity, be-
cause we should be able to guarantee, for instance, that Landau submanifolds are
spacelike in a given neighborhood. For this, we introduce a new concept, thetan-
gential causality, more general than causality and we prove that every Landau
submanifold is tangentially spacelike, but it is not necessarily spacelike. On the
other hand, we prove that every horismos submanifold is tangentially lightlike and
as well as lightlike.

In physics, it is usual to work with synchronizable timelike vector fields. In
most cases, the leaves of the orthogonal foliation are considered “simultaneity
submanifolds.” In this work it is proved that given aC∞ future-pointing causal
curve,observer, and a timelike vector tangent to the observer, there exists, on a
certain tubular neighborhood of this observer, a synchronizable timelike vector
field containing this vector. Moreover, this vector field is orthogonal to a Landau
submanifolds foliation. On the other hand, it is also proved that given an observer
there exists, a foliation whose leaves are past-pointing horismos submanifolds of
points of the observer (in a tubular neighborhood). The foliations structure allows
us to extend simultaneity to neighborhoods of the space-time.

2. PRELIMINARY CONCEPTS

In what follows (M, g) will be a four-dimensional lorentzian space-time
manifold.

Definition 1. An open neighborhoodN0 of the origin inTpM is said to benormal
if the following conditions hold:

(i) the mapping expp : N0→ Np is a diffeomorphism, whereNp is an open
neighborhood ofp,

(ii) given X ∈ N0 andt ∈ [0, 1] we have thatt X ∈ N0.

For a given pointp ∈ M , an open neighborhoodNp of p is anormal neigh-
borhoodof p if Np = exppN0 whereN0 is a normal neighborhood of the origin
in TpM . Finally, an open setV 6= ∅ in M , which is a normal neighborhood of each
one of its points, is aconvex normal neighborhood.

These neighborhoods are useful to obtain a dynamical study of simultaneity.
Moreover, theWhitehead Lemmaasserts that givenp ∈ M and a neighborhoodU
of p there exists a simple convex neighborhoodV of p such thatV ⊂ U (Sachs
and Wu, 1977). Therefore, we can consider these kind of neighborhoods without
any loss of generality.

We are going to introduce two static ways to analyze simultaneity: Landau
and horismos submanifolds. Givenu ∈ TpM and the metric tensor fieldg, we
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consider the submersion8 : Np→ R given by8(q) = g(exp−1
p q, u). The fiber

L p,u := 8−1(0) (1)

is a regular three-dimensional submanifold, calledLandau submanifold. The next
result (Olivert, 1980) guarantees its uniqueness:

Theorem 1. Given u∈ TpM a future-pointing timelike vector and Su its orthog-
onal 3-space, there exists a unique regular three-dimensional submanifold Lp,u

such that Su is tangent to Lp,u at p and whose points are simultaneous with p in
the local inertial proper system of p.

On the other hand, defining the submersionϕ : Np − {p} → R given by
ϕ(q) = g(exp−1

p q, exp−1
p q), the fiber

Ep := ϕ−1(0) (2)

is a regular three-dimensional submanifold, calledhorismos submanifoldof p,
which has two connected components (Sachs and Wu, 1977). We will callpast-
pointing (respectivelyfuture-pointing) horismos submanifoldof p, E−p (resp.E+p ),
to the connected component of (2) in which, for each pointq ∈ Np − {p}, the
preimage exp−1

p q is a past-pointing (respectively future-pointing) lightlike vector.
The points in a Landau submanifoldL p,u are simultaneous withp in the local

proper system ofp (i.e. they are synchronous withp). The points in a past-pointing
horismos submanifoldE−p are observed simultaneously byp, i.e., they belong to
light signals which arrive atp simultaneously. On the other hand, the points in
a future-pointing horismos submanifoldE+p belong to light signals sent fromp
simultaneously. In general, we will call both, Landau and horismos submanifolds,
simultaneity submanifolds.

3. TANGENTIAL CAUSALITY AND CAUSALITY

Let pbe a point in the space-timeM , we introduce the concept ofp-tangential
causality, that it consists,grosso modo, in a first-order approximation of the causal-
ity on a given neighborhood ofp, for two reasons:

(i) Although this concept is more general than causality, it is more operative.
(ii) An observer detects the events of the space-time in its tangent space. So,

the p-tangential causality is a kind of “observed causality.”

3.1. Tangential Causality

Let V be a four-dimensional vector space regarded as aC∞ manifold. It can
be canonically identified with any of its tangent spaces. For eachv ∈ V there exists
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a unique isomorphismφv : TvV → V such that

ω̄(φvw) = w(ω̄) (3)

for all w ∈ TvV and for allω̄ ∈ V∗.
If (V, g) is a lorentzian vector space, we define a (0, 2)-tensor fieldg on

TV by

g(w, z) = g(φvw, φvz) (4)

wherev ∈ V andw, z ∈ TvV . Then, (TvV, g |TvV ) is a lorentzian vector space for
all v ∈ V and therefore (V, g) is a lorentzian manifold (Sachs and Wu,
1977).

Applying this result toTpM , for eachv ∈ TpM we can define a canonical
isomorphismφv of Tv(TpM) onto TpM . Then (TpM, gp) is a lorentzian vector
space, wheregp ≡ g |Tp M . If we definegp onT(TpM) from gp (according to (4)),
then (TpM, gp) is a lorentzian manifold.

Definition 2. Let N be a regular submanifold ofM, p ∈ N,Np a normal neigh-
borhood ofp, andN0 = exp−1

p Np ⊂ TpM . We can consider

exp−1
p N (5)

as a regular submanifold inN0 that we call thep-tangential submanifold ofN.
Givenv ∈ exp−1

p N ∩N0, we define thep-tangential causality ofN atv as the
causality of exp−1

p atv. If this causality is the same at every point of exp−1
p N ∩N0

then we define thep-tangential causality ofN in N0 as the causality of (5) at an
arbitrary point of exp−1

p N ∩N0.

It is easy to prove the next relation

Tq N = expp∗v
(
Tv
(
exp−1

p N
))

, q = expp v ∈ N , (6)

and takingv = 0, as expp∗0 ≡ φ0 (Beem and Ehrlich, 1981), we have

TpN = φ0
(
T0
(
exp−1

p N
))
. (7)

Then, the causality ofN at p coincides with thep-tangential causality ofN
at the origin. However, givenp, q be in N ∩Np, v ∈ exp−1

p N ∩N0 and w ∈
exp−1

q N ∩N0. The causality ofN at p is not necessarily the same as thep-
tangential causality ofN at v 6= 0 or theq-tangential causality ofN at w. Never-
theless, if the causality ofN at p is nonlightlike then these causalities are locally
coincident.
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Applying the tangential causality concept to simultaneity submanifolds we
obtain the next result:

Proposition 1. LetN0 be a normal neighborhood of the origin in TpM. Then

(a) The p-tangential causality of Lp,u is spacelike inN0, for all future-
pointing timelike vector u∈ TpM.

(b) The p-tangential causality of Ep is lightlike inN0− {0}.
Proof:

(a) Supposev ∈ exp−1
p L p,u ∩N0 such thatv 6= 0, theng(u, v) = 0. We de-

finegu : N0→ R by gu(u′) = g(u, u′) for all u′ ∈ N0. Letv′ ∈ N0, then
v′ is in exp−1

p L p,u if and only if gu(v′) = 0. Letw ∈ TvN0, thenw is in
Tv(exp−1

p L p,u) if and only ifw(gu) = 0, i.e., if and only ifg(φ−1
v u, w) = 0

(Sachs and Wu, 1977). Then,

Tv
(

exp−1
p L p,u

) = (φ−1
v u

)⊥
. (8)

But φ−1
v u ∈ TvN0 is timelike becauseg(φ−1

v u, φ−1
v u) = g(u, u) < 0.

Thus (8) is a spacelike subspace and hence exp−1
p L p,u is a spacelike

submanifold in any normal neighborhoodN0 of the origin inTpM .
(b) An equivalent fact can be found in pages 127 and 128 of Sachs and Wu

(1977). ¤

3.2. Causality of Simultaneity Submanifolds

In a normal neighborhoodNp of p, thep-tangential causality of a submanifold
is not necessarily the same as the causality of this submanifold.

Givenv ∈ TpM we denote

v∗q := τpqv, q ∈ Np, (9)

whereτpq is the parallel translation along the unique geodesic segment inNp

which joinsp andq. The vector fieldv∗ onNp is said to beadaptedto the tangent
vectorv. It is clear that (9) depends differentiably onq and thus it is well defined.
Note that the vector fieldv∗ has the same causal character asv because parallel
translation keeps causality.

Proposition 2. Let U be a timelike vector field on an open neighborhoodU . U is
synchronizable onU if and only if its orthogonal 3-distribution(U )⊥ is a foliation
onU . Then,(U )⊥ is calledphysical spaces 3-distributionof U and it is denoted
by SU .

In general, if a submanifold is spacelike or timelike at a pointp, there exists
a small enough neighborhood ofp such that the submanifold is still spacelike or
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timelike, respectively. Then, a Landau submanifoldL p,u is locally spacelike around
p, but given any normal neighborhoodNp of p, the Landau submanifoldL p,u is
not necessarily spacelike at every point ofNp ∩ L p,u. Now we study geometric
properties to determine the causality of simultaneity submanifolds:

Proposition 3. LetNp be a normal neighborhood of p.

(a) Given future-pointing timelike vector u∈ TpM , if u∗ (see(9)) is synchro-
nizable inNp, then Tq L p,u = (u∗q)⊥ for all q ∈ Np ∩ L p,u.

(b) Tq Ep = (v∗q)⊥ for all q ∈ Np ∩ Ep, where v= exp−1
p q.

Proof:

(a) LetN0 = exp−1
p Np be a normal neighborhood of the origin inTpM and

v = exp−1
p q, thenTv(exp−1

p L p,u) = (φ−1
v u)⊥ and hence

Tq L p,u = expp∗v
(
Tv
(

exp−1
p L p,u

))
= {expp∗v w : w ∈ Tv(TpM),× φvw⊥u}.

Let w ∈ (φ−1
v u)⊥. Then g(u∗, (φvw)∗) = 0 andg(u∗, v∗) = 0 because

parallel translation keeps orthogonality. Hence (φvw)∗ and v∗ are in
(u∗)⊥. Since u∗ is synchronizable inNp, (u∗)⊥ is a foliation inNp

and hence [v∗, (φvw)∗]q ∈ (u∗q)⊥. Let us denoteθ (X)(Y) the Lie bracket
[X, Y] whereX, Y are vector fields. Then (θ (v∗)((φvw)∗))q ∈ (u∗q)⊥ for
all w ∈ (φ−1

v u)⊥, i.e., for all w ∈ Tv(TpM) such that (φvw)∗q ∈ (u∗q)⊥.
Hence, using induction overn

(θ (v∗)n((φvw)∗))q ∈ (u∗q)⊥ (10)

for all w ∈ (φ−1
v u)⊥. Since (Helgason, 1962)

expp∗v w =
∞∑

n=0

(−1)n

(n+ 1)!
(θ (v∗)n((φvw)∗))q (11)

and (10) we obtain expp∗v w ∈ (u∗q)⊥, and since the dimension ofTq L p,u

is the same as the dimension of (u∗q)⊥, we have

Tq L p,u = (u∗q)⊥.

(b) Let N0 = exp−1
p Np be a normal neighborhood of the origin inTpM .

ThenTv(exp−1
p Ep) = (φ−1

v v)⊥ and hence

Tq Ep = expp∗v
(
Tv
(
exp−1

p Ep
)) = {expp∗v w : w ∈ Tv(TpM), φvw⊥v}.
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Let w ∈ (φ−1
v v)⊥. Then g(v∗, (φvw)∗) = 0 and g(v∗, v∗) = 0. Hence

(φvw)∗ andv∗ are in (v∗)⊥. We have that (Helgason, 1962) 0= 2g(∇(φvw)∗

v∗, v∗), and since the torsion vanishes and because (∇v∗ (φvw)∗)q = 0, we
can write(∇(φvw)∗v

∗)
q
= (∇(φvw)∗v

∗)
q
− (∇v∗ (φvw)∗

)
q
= −(θ (v∗)((φvw)∗))q.

Therefore (θ (v∗)((φvw)∗))q ∈ (v∗q)⊥, for all w ∈ (φ−1
v v)⊥, i.e., for allw ∈

Tv(TpM) such that (φvw)∗q ∈ (v∗q)⊥. It is easy to show using induction over
n that

(θ (v∗)n((φvw)∗))q ∈ (v∗q)⊥ (12)

for all w ∈ (φ−1
v v)⊥. Using (11) and (12) we obtain expp∗v w ∈ (v∗q)⊥.

Since the dimension ofTq Ep is the same as the dimension of (v∗q)⊥, we
haveTq Ep = (v∗q)⊥. ¤

An immediate consequence is the next result:

Corollary 1.

(a) Given a future-pointing timelike vector u∈ TpM , if u∗ is synchronizable
in Np, then Lp,u is spacelike inNp.

(b) Ep is lightlike inNp − {p}.

It is important to remark that given a pointp ∈ M andu ∈ TpM a future-
pointing timelike vector, if the adapted vector fieldu∗ (given by expression (9)) is
not synchronizable in a normal neighborhoodNp of p, then the spacelike causal
character ofL p,u is not ensured inNp, but we can always ensure that thep-
tangential causality ofL p,u is spacelike inN0 = exp−1

p Np.
There exists a necessary and sufficient condition for Landau submanifolds to

be spacelike, but it is less operative than the sufficient condition. Anyway, we are
going to enunciate this result without a proof:

Proposition 4. LetNp be a normal neighborhood of p. Given u∈ TpM future-
pointing timelike, the following conditions are equivalents:

(i) For all q ∈ Np ∩ L p,u, we have Tq L p,u = (u∗q)⊥.
(ii) There exists a normal neighborhoodN ′p of p such thatN ′p ∩ L p,u =
Np ∩ L p,u and u∗ is synchronizable inN ′p.

Given a simultaneity submanifold, we can construct its tangent spaces in
any point. Sinceu∗q = τpqu and parallel translation keeps orthogonality, we have
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(u∗q)⊥ = τpqu⊥. So, ifu∗ is synchronizable in a normal neighborhoodNp of p and
sinceu⊥ = TpL p,u we can write (Proposition 3)

Tq L p,u = τpqTpL p,u. (13)

Analogously, sincev∗q = τpqv we have (v∗q)⊥ = τpqv⊥ and hence (Proposition 3)

Tq Ep = τpqv⊥. (14)

4. SIMULTANEITY FOLIATIONS

On a convex normal neighborhoodV we can define the Landau and horismos
submanifolds for eachp ∈ V. In particular, givenβ : I → M aC∞ future-pointing
causal curve (observer), in V we can define the sets of Landau and horismos
submanifolds {

Lβ(t)
}

t∈I ,
{
E+β(t)

}
t∈I ,

{
E−β(t)

}
t∈I ,

whereLβ(t) denotesLβ(t),β(t) given by (1). Our aim was to study this Landau and
horismos submanifolds as leaves of a spacelike and lightlike foliation, respectively.

4.1. Landau Foliations

Theorem 2. Letβ : I → M be an observer and p= β(t0) for any t0 ∈ I . Then,

(i) there exists a convex normal neighborhoodV of p such that∀q ∈ V,
there exists a unique t1 ∈ I such thatβ(t1) ∈ V, q ∈ Lβ(t1).

(ii) there exists a foliationLβ in V given by

Lβ(q) = Tq Lβ(t1), (15)

where q∈ Lβ(t1),and the leaves ofLβ are the Landau submanifolds Lβ(t1).

The foliationLβ is calledLandau foliationgenerated byβ.

Proof: There exists an open neighborhoodV of p, that we can consider a convex
normal neighborhood, on which the normal exponential map ofβ I is a diffeomor-
phism (Sakai, 1996). Therefore, each point inV is contained precisely in a unique
Landau submanifoldLβ(t1), whereβ(t1) ∈ β I ∩ V. ObviouslyLβ(t1) are leaves of
a foliation onV. ¤

The points of a leaf are simultaneous in the local inertial proper system of
the observer. However, given a convex normal neighborhood we can not assure
that the Landau submanifolds generated by an observer are leaves of a folia-
tion, because these Landau submanifolds can intersect themselves. In fact, given
β : I → M an observer in Minkowski space-time, as the Landau submanifolds
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Lβ(t) are hyperplanes orthogonals to the timelike vectorβ̇(t), if β is not a geodesic,
the Landau submanifolds generated byβ will intersect themselves. Theorem 2 as-
sures us that there exists a small enough neighborhood for Landau submanifolds
to be nonintersected between them.

Given the foliationLβ in V, if the adapted vector field (according to (9)) to
β̇(t) is synchronizable inV for eacht ∈ I then, Corollary 1 assures thatLβ is
spacelike inV. Thus, we can build foliations inV from the orthogonal 3-spaces of
the vector fields adapted tȯβ(t) for eacht ∈ I , (β̇(t)∗)⊥. Then, the leaf containing
β(t) is the Landau submanifoldLβ(t).

Moreover, ifLβ is spacelike inV, then it is orthogonal to a timelike 1-foliation.
So, we have defined a timelike vector field fromβ:

Theorem 3. Let the foliationLβ be inV. If the adapted vector field tȯβ(t) is
synchronizable inV for each t∈ I , thenL⊥β is a synchronizable future-pointing
timelike vector field.

Given the foliationLβ in V, if the vector field adapted tȯβ(t) is synchro-
nizable inV for eacht ∈ I , by (13) we have thatTq L p,u = τpqTpL p,u, where
p = β(t0), u = β̇(t0), t0 ∈ I , andq ∈ L p,u ∩ V. Therefore, because parallel trans-
lation keeps orthogonality andLβ(p)⊥ = u, we obtain thatLβ(q)⊥ = τpqu.

Moreover, asβ is an integral curve ofL⊥β , we can build a different Landau
foliation from each integral curve ofL⊥β . These foliations will be the same only in
some cases (next result is easy to prove):

Proposition 5. Let the foliationLβ be inV and letβ ′ : I ′ → M be an integral
curve of the vector fieldL⊥β . If Lβ ′ (the Landau foliation generated byβ ′) is well
defined and the leaves ofLβ (or Lβ ′ ) are totally geodesics, thenLβ ′ = Lβ .

4.2. Horismos Foliations

Let γ : I → M be a geodesic, ˜γ be a positive affine reparametrization ofγ
(then γ̃ is a geodesic). Let [γ ] denote the corresponding equivalence
class of geodesics. Letλ : I → M be a future-pointing lightlike geodesic. Thenλ
will be calledphotonand the equivalence class [λ] will be called light signal.

We will study from which points can an observerβ receive light signals and
to which ones can he send them. The next Proposition can be found in Sachs and
Wu (1977):

Proposition 6. Letβ : I → M be a C∞ future-pointing causal curve and sup-
pose t0 ∈ I is given. There exists an open interval J⊂ I containing t0 and a
convex normal neighborhoodV of β(t0) such that, for all x∈ V − β J there exist
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t−1, t1 ∈ J (where t−1 < t0 < t1), a light signal [λ] from x toβ(t1) and a light
signal[λ′] fromβ(t−1) to x. Moreover t−1, t1, [λ], [λ′] are unique.

Applying Proposition 6 we can construct horismos foliations:

Theorem 4. Let β : I → M be a C∞ future-pointing causal curve and t0 ∈ I .
Then,

(i) there exists an open interval J⊂ I containing t0 and a convex normal
neighborhoodV− (respectivelyV+) ofβ(t0) such that∀q ∈ V− − β J (re-
spectively∀q ∈ V+ − β J) there exists a unique t1 ∈ J such thatβ(t1) ∈
V−, q ∈ E−β(t1) (respectivelyβ(t1) ∈ V+, q ∈ E+β(t1)).

(ii) the mappings

E−β : V− − β J → P(V− − β J) given by ε−β (q) = Tq E−β(t1),

E+β : V+ − β J → P(V+ − β J) given by ε+β (q) = Tq E+β(t1),

are foliations. The leaves ofE−β andE+β are the past-pointing and future-
pointing horismos submanifolds, respectively

The foliationsE−β andE+β are called respectivelypast-pointingand future-
pointing horismos foliationgenerated byβ.

Fig. 1. Scheme of simultaneities on a normal neighborhood.
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GivenV a convex normal neighborhood andβ : I → V an observer, we can
ensure that the future-pointing (past-pointing) horismos submanifolds generated
by β do not intersect themselves.

We can build the neighborhoodsV− and V+ of the last Theorem in the
following way: We define the open sets

V− = {p ∈ V : p ∈ E−β(t), t ∈ I
}
, V+ = {p ∈ V : p ∈ E+β(t), t ∈ I

}
.

they are convex normal neighborhoods becauseV is a convex normal neighbor-
hood.

Hence, there exists a future-pointing horismos foliation generated byβ on
V+. Analogously, there exists a past-pointing horismos foliation generated byβ

onV−. Moreover, by Corollary 1, this foliations are lightlike foliations. Then, we
can define horismos foliations and Landau’s foliations on the same convex normal
neighborhood (see Fig. 1).

5. CONCLUSION

In this paper we have proved that the Landau submanifolds generated by
an observer are not always spacelike leaves of a foliation in a convex normal
neighborhood. On the other hand, the horismos submanifolds generated by an
observer are always lightlike leaves of a foliation in any convex normal neighbor-
hood. It can be applied to the study of wave fronts of a free massless particle in
the following way:

In Symplectic Mechanics, the evolution of a free massless elementary particle
can be described by a three-dimensional lightlike foliationÄ in the Minkowski
space-time (Souriau, 1970, 1997). This result is generalized (Liernet al., 2000;
Liern and Olivert, 1999) to a general space-timeM making use of fiber bundles
structures that locally preserve the properties of special relativity.

For a spacelike Landau submanifoldL p,u and the natural injectioni : L p,u →
M , the mappingG : L p,u → P(T(L p,u)) given by

G(m) = Ä(m) ∩ i∗(TmL p,u), ∀m ∈ L p,u, (16)

is a two-dimensional foliation (Liern and Olivert, 1995, 1999) whose integral
submanifolds can be interpreted aswave fronts. Taking into account that we can
define a bundle-like (Naveira, 1970) metric onL p,u (Liern and Olivert, 1995), we
can prove that the separation between the wave fronts is locally constant (Liern
and Olivert, 1995). This result is quite interesting but it is not complete for two
reasons:

(i) In these works, authors worked on a unique Landau submanifold,
(ii) and they worked in a neighborhood where the metric was bundle-like.
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In this paper we have solved both disadvantages. Firstly, we can interchange
Landau submanifolds in a differential way because they form a spacelike foliation
when they verify some conditions, as we show in Section 4. Moreover, the second
disadvantage is solved by using convex normal neighborhoods in general.

Therefore, given an observerβ, we obtain the wave fronts of a free massless
elementary particleÄ from the intersection ofÄ with the Landau foliationLβ
generated by the observer. But, in general, the observed wave fronts are obtained
from the intersection ofÄwith the past-pointing horismos foliationε−β .This double
interpretation of simultaneities makes evident the differences between them.
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